

Thermische Berechnung eines Fensters nach **SIA 331**

Prüfbericht

Prüfgegenstand Zweiflügliges Holz-Metall Stulpfenster mir Dreifachverglasung,

 $U_{a} = 0.7 \text{ W/m}^{2}\text{K}$

Typ, Modell MEKO 32 DD HM 64/74

Prüfnormen EN ISO 10077-1 (05/2010), EN ISO 10077-2 (06/2012)

EN 12524 (11/2000), SIA 331 (10/2012)

Auftraggeber Holzbau Bucher AG

> Untergasse 11 CH-6064 Kerns

Datum 15.04.2015

Bericht Nr. 73DL-007064-P-01-PB-01

Auftrag Nr. P.007064-10-73DL-01

Dieser Prüfbericht verliert seine Gültigkeit, sobald sich die Bauart oder die Gültigkeit

Werkstoffe des Prüfgegenstandes oder seiner Einzelteile ändern.

Die ersten zwei Seiten dieses Prüfberichtes können als Kurzfassung verwendet

Adresse der **Berner Fachhochschule**

Prüfstelle Architektur, Holz und Bau

Institut für Holzbau, Tragwerke und Architektur

Solothurnstrasse 102, CH-2504 Biel Tel / Fax +41 (0)32 344 0 341 / 391

www.ahb.bfh.ch

Andrea Uehlinger A. Muhlinger Sachbearbeiter

Stellvertretender

Marc Donzé Kompetenzbereichsleiter

1 Zusammenfassung der Ergebnisse

1.1 Prüfobjekt

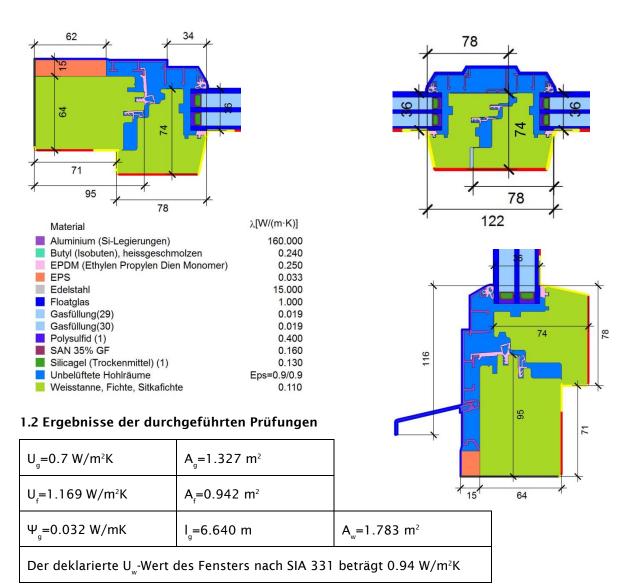
Blendrahmen: Fichte 64 x 95 mm

Dichtung Blendrahmen: Anzahl: 2, Material: EPDM

Flügelrahmen: Fichte 74 x 78 mm

Dichtungen

Flügelrahmen: Seitlich, oben und unten keine, Mittelpartie: Anzahl: 2, Material: EPDM Verglasung: 3-fach Isolierglas, Dicke: 36 mm, Aufbau: 4-12-4-12-4, $U_0 = 0.7 \text{ W/m}^2\text{K}$,


Gasfüllung: Argon, Hersteller: Glas Trösch Holding AG

Material Abstandhalter,

Randverbund: Kunststoff/Edelstahl, Swisspacer V

Glasabdichtung: Innen: EPDM, aussen: EPDM

Mauerlichtmass: 1550 mm x 1150 mm

Inhaltsverzeichnis

1	ZUSAMMEN	ifassung der Ergebnisse	2
	1.1 Prüfo	bjekt	2
	1.2 Ergeb	onisse der durchgeführten Prüfungen	2
2	Prüfgruni	DLAGEN	4
3	Berechnur	NGSGRUNDLAGEN	4
	3.1 Mate	rialeigenschaften	4
	3.2 Rand	bedingungen	4
4	Prüfgegen	ISTAND	5
5	ERGEBNISSE	<u> </u>	
	5.1 U _w -We	ert Berechnung	5
	5.2 U _f -We	ert des Fensterrahmens	6
	5.3 U _g -We	ert des Glases	6
	5.4 Ψ -We	ert des Glases	7
	5.5 U _w -We	ert des Fensters nach SIA 331	7
	5.6 Glasa	nteil des eingebauten Fensters	8
6	BESTIMMUN	ngen zum vorliegenden Bericht	8
	6.1 Umfa	ng des Berichts	8
ΑN	HANG A:	Detailzeichnungen	9
ΑN	HANG B:	Detaillierte U _F -Wert Berechnungen	12
ΑN	HANG C:	DETAILLIERTE PSI-WERT BERECHNUNGEN	15

2 Prüfgrundlagen

EN ISO 10077-1 (05/2010) Wärmetechnisches Verhalten von Fenstern, Türen und

Abschlüssen - Berechnungen des Wärmedurchgangskoeffizienten -

Teil 1: Allgemeines.

EN ISO 10077-2 (06/2012) Wärmetechnisches Verhalten von Fenstern, Türen und

Abschlüssen - Berechnungen des Wärmedurchgangskoeffizienten -

Teil 2: Numerisches Verfahren für Rahmen.

EN 12524 (11/2000) Baustoffe und -Produkte - Wärme- und

Feuchteschutztechnische Eigenschaften - Tabellierte

Bemessungswerte

SIA 331 (10/2012) Fenster und Fenstertüren

3 Berechnungsgrundlagen

Der Wärmedurchgangskoeffizient des Fensters U wird nach EN ISO 10077-2 berechnet. Die Berner Fachhochschule – Architektur, Holz und Bau ist für diese Berechnung nach EN ISO 10077-2 akkreditiert.

Bei der Berechnung des U_f -Wertes (U-Wert des Rahmens) wird die Mittellage durch ein fiktives Paneel mit einem Lambda-Wert von 0.035 W/(mK) ersetzt.

Für die Berechnungen des U_f- und psi-Wertes wurde das FEM Programm flixo professional 7.0.612.1 der Firma Infomind GmbH, Zürich verwendet.

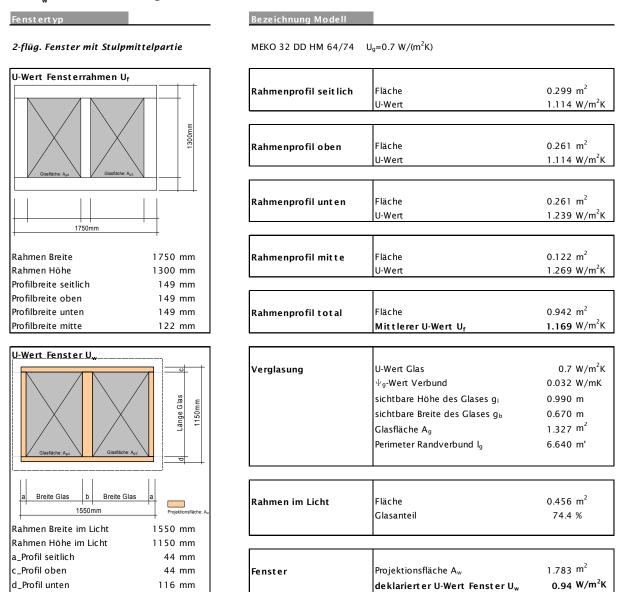
3.1 Materialeigenschaften

Die Materialeigenschaften (lambda-Werte) stammen aus den Normen SN EN ISO 10077-2 und SN EN 12524. Die Materialisierung der verschiedenen Oberflächenmodelle ist im Anhang B und C dargestellt.

3.2 Randbedingungen

Randbedingungen für die U_f , und Ψ -Wert Berechnung, basierend auf EN ISO 10077-2:

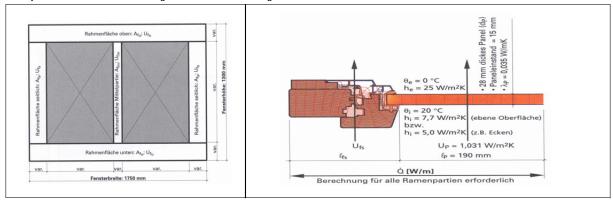
Beschreibung	Temperatur [˚C]	Wärmeübergangswiderstand [m²K/W]
aussenseitig	0	0.040
raumseitig Standard	20	0.130
raumseitig reduziert	20	0.200

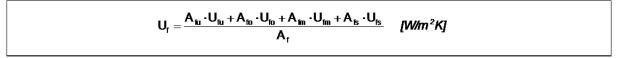

4 Prüfgegenstand

Die U-Wert Berechnung erfolgte an einem zweiflügligen Normfenster gemäss SIA 331 mit den Abmessungen: Aussenmass L \times H = 1.75 \times 1.3 m und Mauerlichtmass L \times H = 1.55 \times 1.15 m. Die Schnittzeichnungen befinden sich im Anhang A.

5 Ergebnisse

b_Profil mitte


5.1 U -Wert Berechnung



122 mm

5.2 U_r-Wert des Fensterrahmens

Der U_{Γ} Wert des Fensterrahmens ist gemäss EN ISO 10077-2 gerechnet

A _{fs}	2	0.149 m	1.002 m	=	0.299 m²
A _{fo}	1	0.149 m	1.750 m	=	0.261 m ²
A _{fu}	1	0.149 m	1.750 m	=	0.261 m ²
A _{fm}	1	0.122 m	1_002 m	=	0.122 m²
Af	X*	Breite *	Länge	=	0.942 m²

U _{fs}	gemäss Flixo Berechnung	1.114 w/m²K
U _{fo}	gemäss Flixo Berechnung	1.114 W/m²K
U _{fu}	gemäss Flixo Berechnung	1.239 W/m²K
U _{fim}	gemäss Flixo Berechnung	1.269 W/m²K

Mittlerer U-Wert über die Rahmenfläche Ur	1.169 W/m²K
---	-------------

5.3 U_g-Wert des Glases

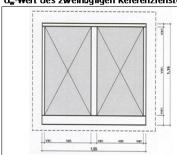
Der Glaskennwert $\,U_g\,$ ist den Unterlagen des Glasherstellers entnommen

Gewählt:	Nach EN 673				
Verglasung	Typ (Produktname)	Dimension [mm]	Gasfüllung	U _g -Wert [W/m ² K]	
dreifach		4-12-4-12-4	Argon	0.7	

5.4 Ψ -Wert des Glases

Der Glaskennwert Ψ_{g} ist gemäss EN ISO 10077-2 gerechnet

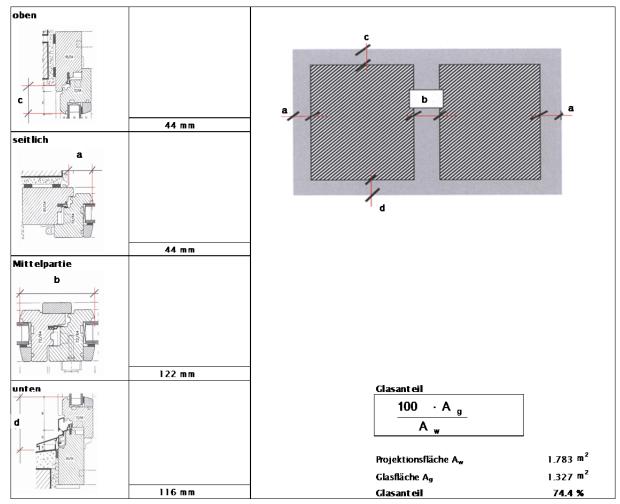
Gewählt:		
Materialwahl des Abstandhalters	Typ (Produktname)	
Kunststoff/Edelstahl	Swisspacer V	


$$\Psi_g = \frac{\Psi_s \cdot g_l \cdot 2 + \Psi_o \cdot g_b \cdot 2 + \Psi_u \cdot g_b \cdot 2 + \Psi_m \cdot g_l \cdot 2}{I_g} \quad [W/mK]$$

Berechnung $\Psi ext{-Wert}$ des Glasrandverbundes

Ψ_{s}	gemäss Berechnung Flixo	0.032 W/mK
$\Psi_{\mathbf{o}}$	gemäss Berechnung Flixo	0.032 W/mK
$\Psi_{\mathbf{u}}$	gemäss Berechnung Flixo	0.032 W/mk
Ψ_{m}	gemäss Berechnung Flixo	0.033 W/ml

5.5 U -Wert des Fensters nach SIA 331


 $\mathbf{U_{w}} ext{-}\mathbf{Wert}$ des zweiflügligen Referenzfensters, bezogen auf die Projektionsfläche in der äusseren, lichten Maueröffnung.

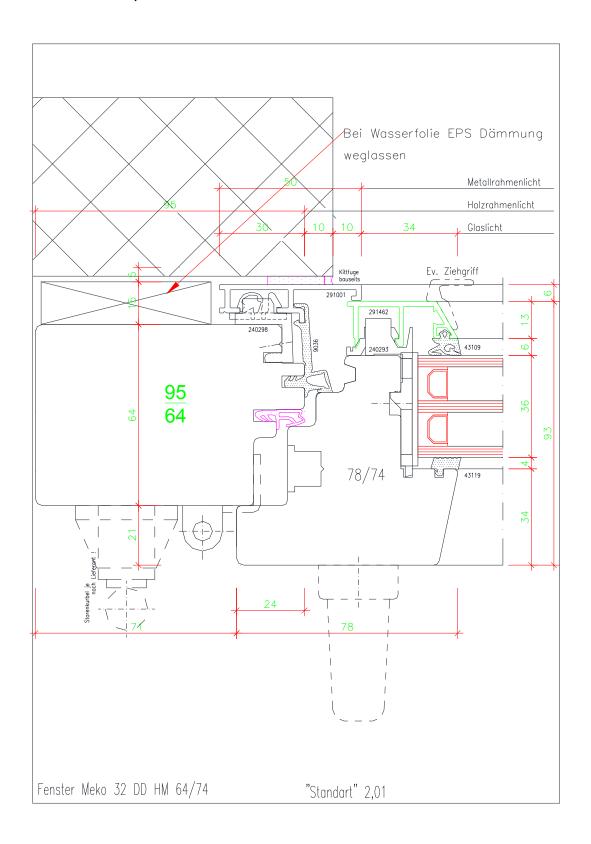
$$U_{w} = \frac{A_{f} \cdot U_{f} + A_{g} \cdot U_{g} + I_{g} \cdot \psi_{g}}{A_{w}} \quad \text{[W/m}^{2}\text{K]}$$

Af	0.456 m ²
A_g	1.327 m ²
A _w	1.783 m ²
l _g	6.640 m'
U _F	1.169 W/m ² K
Ug	0.700 W /m²K
$\Psi_{\mathbf{g}}$	0.032 W/m²K

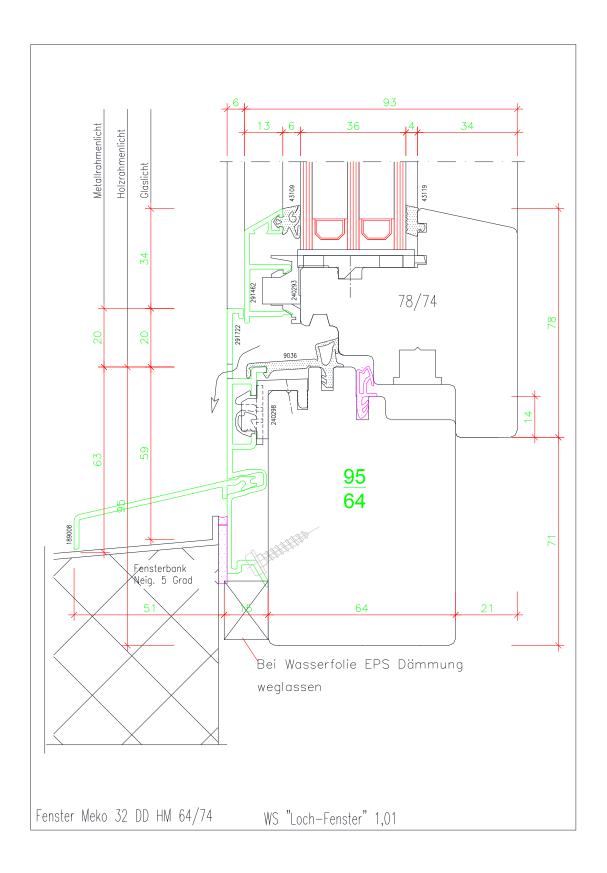
U-Wert Fenster:	U _w	0.940 W/m²K
-----------------	----------------	-------------

5.6 Glasanteil des eingebauten Fensters

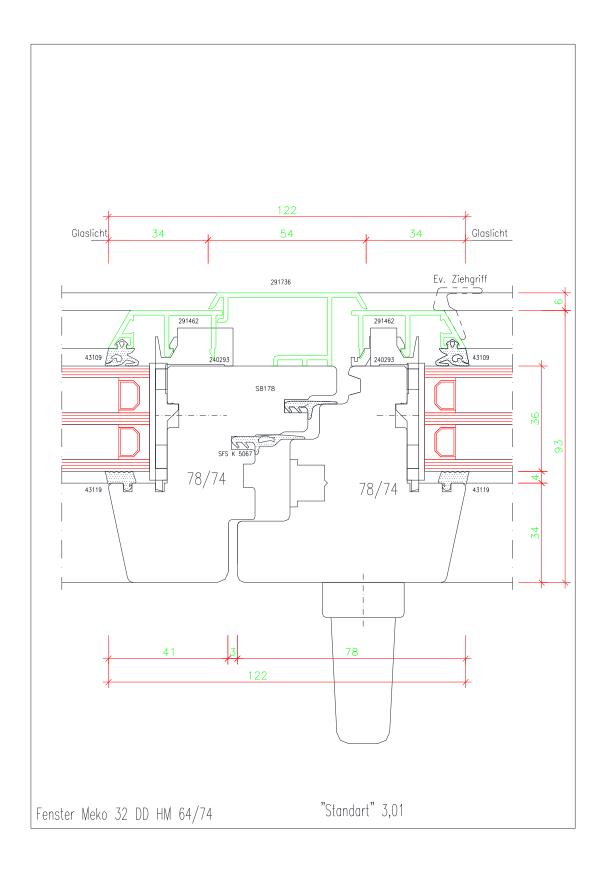
6 Bestimmungen zum vorliegenden Bericht


Die Prüfergebnisse dieses Berichts beziehen sich ausschliesslich auf die geprüften Gegenstände. Dieser Bericht darf nicht ohne Genehmigung der Berner Fachhochschule, Architektur, Holz und Bau auszugsweise vervielfältigt werden. Jegliche Veröffentlichung des Berichts oder von Teilen davon bedarf der schriftlichen Zustimmung der Fachhochschule. Angaben zur Messunsicherheit werden auf Anfrage gemacht. Ein Original dieses Berichts wird für 5 Jahre aufbewahrt. Dieser Bericht ist nur mit den Unterschriften des Kompetenzbereichsleiters Fenster-, Türen- und Fassadentechnik und des Sachbearbeiters gültig.

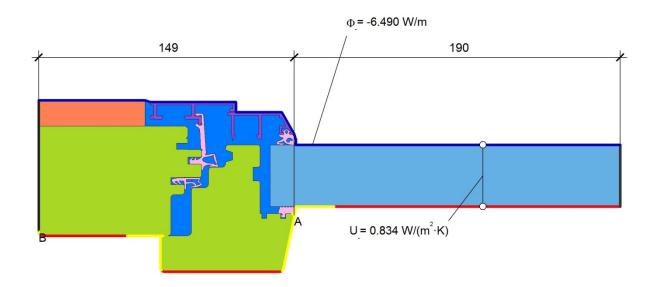
6.1 Umfang des Berichts


Dieser Bericht besteht aus 17 Seiten inkl. Anhang.

Anhang A: Detailzeichnungen


A.1 Detail: seitlich / oben

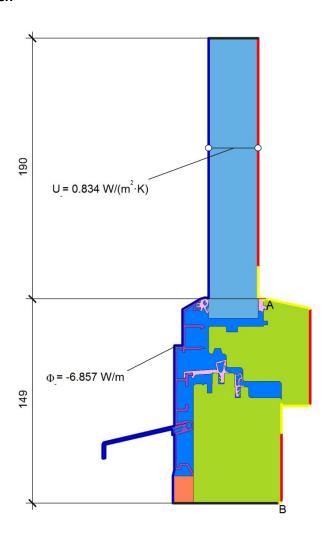
A.2 Detail: unten



A.3 Detail: Mittelpartie

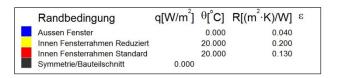
Anhang B: Detaillierte U_f-Wert Berechnungen

B.1 Detail: Seite

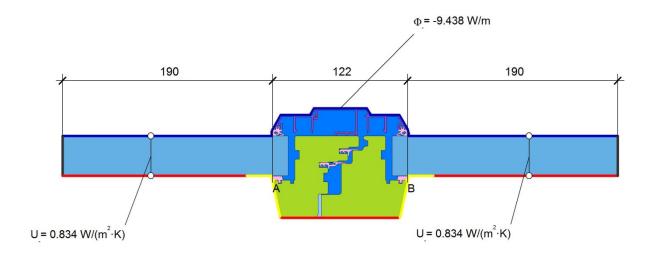


$$U_{_{fA,B}} = \frac{\frac{\Phi}{\Delta T} - U_{_{p}} \cdot b_{_{p}}}{b_{_{f}}} = \frac{\frac{6.490}{20.000} - 0.834 \cdot 0.190}{0.149} = 1.114 \text{ W/(m}^2 \cdot \text{K)}$$

Material	$\lambda[W/(m\cdot K)]$
Aluminium (Si-Legierungen)	160.000
EPDM (Ethylen Propylen Dien Monome	er) 0.250
EPS	0.033
Maske	0.035
Unbelüftete Hohlräume	Eps=0.9/0.9
Weisstanne, Fichte, Sitkafichte	0.110

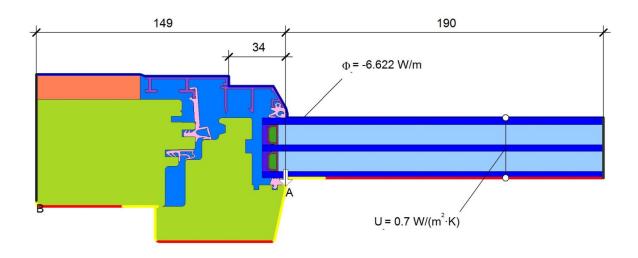

Randbedingung	$q[W/m^2]$	$\theta[^{\circ}C]$	$R[(m^2 \cdot K)/W]$	3
Aussen Fenster		0.000	0.040	
Innen Fensterrahmen Reduziert		20.000	0.200	
Innen Fensterrahmen Standard		20.000	0.130	
Symmetrie/Bauteilschnitt	0.000			

B.2 Detail: Unten



$$U_{fA,B} = \frac{\frac{\Phi}{\Delta T} - U_{p} \cdot b_{p}}{b_{f}} = \frac{\frac{6.857}{20.000} - 0.834 \cdot 0.190}{0.149} = 1.239 \text{ W/(m}^{2} \cdot \text{K)}$$

B.3 Detail: Mittelpartie

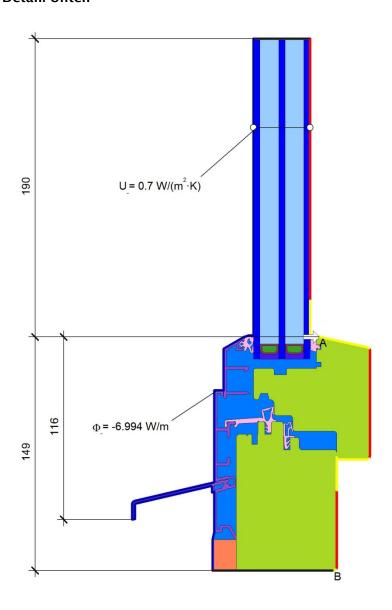

$$U_{fA,B} = \frac{\frac{\Phi}{\Delta T} - U_{p1} \cdot b_{p1} - U_{p2} \cdot b_{p2}}{b_{e}} = \frac{\frac{9.438}{20.000} - 0.834 \cdot 0.190 - 0.834 \cdot 0.190}{0.122} = 1.269 \text{ W/(m}^2 \cdot \text{K)}$$

Material	$\lambda[W/(m\cdot K)]$
Aluminium (Si-Legierungen)	160.000
EPDM (Ethylen Propylen Dien Monomer)	0.250
Leicht belüftete Hohlräume	Eps=0.9/0.9
Maske	0.035
Unbelüftete Hohlräume	Eps=0.9/0.9
Weisstanne, Fichte, Sitkafichte	0.110

Randbedingung	q[W/m ²]	$\theta[^{\circ}C]$	$R[(m^2 \cdot K)/W]$	3
Aussen Fenster		0.000	0.040	
Innen Fensterrahmen Reduziert		20.000	0.200	
Innen Fensterrahmen Standard		20.000	0.130	
Symmetrie/Bauteilschnitt	0.000			

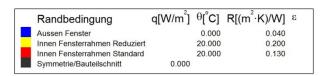
Anhang C: Detaillierte psi-Wert Berechnungen

C.1 Detail: Seite

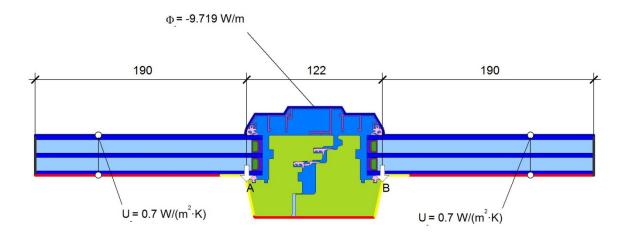


$$\psi_{A} = \frac{\Phi}{\Delta T} - U_{g} \cdot b_{g} - U_{f} \cdot b_{g} = \frac{6.622}{20.000} - 0.700 \cdot 0.190 - 1.114 \cdot 0.149 = 0.032 \text{ W/(m·K)}$$

Material	$\lambda[W/(m\cdot K)]$
Aluminium (Si-Legierungen)	160.000
Butyl (Isobuten), heissgeschmolzen	0.240
EPDM (Ethylen Propylen Dien Monomer)	0.250
EPS	0.033
Edelstahl	15.000
Floatglas	1.000
Gasfüllung(29)	0.019
Gasfüllung(30)	0.019
Polysulfid (1)	0.400
SAN 35% GF	0.160
Silicagel (Trockenmittel) (1)	0.130
Unbelüftete Hohlräume	Eps=0.9/0.9
Weisstanne, Fichte, Sitkafichte	0.110


Randbedingung	q[W/m ²]	$\theta[^{\circ}C]$	$R[(m^2 \cdot K)/W]$	3
Aussen Fenster		0.000	0.040	
Innen Fensterrahmen Reduziert		20.000	0.200	
Innen Fensterrahmen Standard		20.000	0.130	
Symmetrie/Bauteilschnitt	0.000			

C.2 Detail: Unten



$$_{\Psi_{A}} = \frac{\Phi}{\Delta T} - U_{g} \cdot b_{g} - U_{f} \cdot b_{f} = \frac{6.994}{20.000} - 0.700 \cdot 0.190 - 1.239 \cdot 0.149 = 0.032 \text{ W/(m·K)}$$

Materia	al	$\lambda[W/(m\cdot K)]$
Aluminiur	m (Si-Legierungen)	160.000
Butyl (Iso	buten), heissgeschmolzen	0.240
EPDM (E	thylen Propylen Dien Monomer)	0.250
EPS		0.033
Edelstahl		15.000
Floatglas		1.000
Gasfüllun	g(29)	0.019
Gasfüllun	g(30)	0.019
Polysulfid	(1)	0.400
SAN 35%	GF	0.160
Silicagel (Trockenmittel) (1)	0.130
Unbelüfte	te Hohlräume	Eps=0.9/0.9
Weisstan	ne, Fichte, Sitkafichte	0.110

C.3 Detail: Mittelpartie

$$\psi_{A,B} = \frac{\frac{\Phi}{\Delta T} - U_{g1} \cdot b_{g1} - U_{f} \cdot b_{f} - U_{g2} \cdot b_{g2}}{2} = \frac{\frac{9.719}{20.000} - 0.700 \cdot 0.190 - 1.269 \cdot 0.122 - 0.700 \cdot 0.190}{2} = 0.033 \text{ W/(m·K)}$$

Material	$\lambda[W/(m\cdot K)]$
Aluminium (Si-Legierungen)	160.000
Butyl (Isobuten), heissgeschmolzen	0.240
EPDM (Ethylen Propylen Dien Monomer)	0.250
Edelstahl	15.000
Floatglas	1.000
Gasfüllung(35)	0.019
Gasfüllung(36)	0.019
Gasfüllung(37)	0.019
Gasfüllung(38)	0.019
Leicht belüftete Hohlräume	Eps=0.9/0.9
Polysulfid (1)	0.400
SAN 35% GF	0.160
Silicagel (Trockenmittel) (1)	0.130
Unbelüftete Hohlräume	Eps=0.9/0.9
Weisstanne, Fichte, Sitkafichte	0.110

Randbedingung	q[W/m ²]	$\theta[^{\circ}C]$	$R[(m^2 \cdot K)/W]$	3
Aussen Fenster		0.000	0.040	
Innen Fensterrahmen Reduziert		20.000	0.200	
Innen Fensterrahmen Standard		20.000	0.130	
Symmetrie/Bauteilschnitt	0.000			