U_f-Wert-Berechnung nach EN ISO 10077-1 und EN ISO 10077-2

Prüfbericht

Berner Fachhochschule Architektur, Holz und Bau Burgdorf, Biel

Bericht Nr. 7858-PB-11

Auftrag Nr. 7858.DPE

Klassifizierung Vertraulich

Prüfgegenstand Holz Aluminium Profil, Seite, Unten, Mitte

Typ, Modell oder Seriennummer

System Oeko Plus

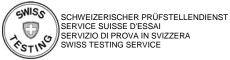
Datum 15.06.2009

Auftraggeber Holzbau Bucher AG

Herr Stefan Bucher Untergasse 11 6064 Kerns

Adresse der Prüfstelle Berner Fachhochschule

Architektur, Holz und Bau


Abteilung F+E, Fassaden-, Bauelemente und Möbel

Solothurnstrasse 102, CH-2504 Biel Tel / Fax +41 (0)32 344 0 341 / 391

www.hsb.bfh.ch

Sachbearbeiter Holger Thoms

Leiter F+E Fassaden-, Bauelemente und Möbel Urs Uehlinger

BFH I Forschung und Entwicklung

INHALTSVERZEICHNIS

1	ZUSAMMENFASSUNG DER ERGEBNISSE	3
2	Prüfgrundlagen	3
3	Prüfgegenstand	3
4	Numerische Berechnungen	4
	4.1 U _f -Wert-Berechnungen	4
5	Prüfergebnisse U _F Wert	5
6	BESTIMMUNGEN ZUM VORLIEGENDEN BERICHT	8
7	Verzeichnisse	9
	7.1 Tabellenverzeichnis	9
	7.2 Abbildungsverzeichnis	9
ΑN	NHANG A: DETAILZEICHNUNGEN	10
	A.1 Detail: oben/seitlich	
	A.2 Detail: unten	
	A.3 Detail: Mittelpartie	12

1 ZUSAMMENFASSUNG DER ERGEBNISSE

Die U_f-Wert-Berechnung wurde an Holz Aluminium Fensterprofilen des Systems Oeko Plus der Firma Holzbau Bucher AG durchgeführt.

Der Uf Wert wird nach folgender Formel berechnet:

$$U_f = \frac{L_f^{2D} - U_P \cdot b_P}{b_f}$$

	$\boldsymbol{\nu}_{\mathrm{f}}$	
U_f L_f^{2D}	Wärmedurchgangskoeffizient des Profil	$[W/m^2K]$
L_f^{2D}	Zweidimensionaler thermischer Leitwert	[W/mK]
U_P	Wärmedurchgangskoeffizient der Füllung	[W/m ² K]
b_f	Projizierte Breite des Rahmenprofils	[m]
b_p	Sichtbare Breite der Füllung	[m]

Die Berechnungen ergaben folgendes Ergebnis:

Detail	Berechnungsergebnis
Seite/Oben	$U = 1.477 \text{ W/m}^2\text{K}$, nach EN ISO 10077-1 ergibt dies $U_f = 1.5 \text{ W/m}^2\text{K}$
Unten	$U = 1.569 \text{ W/m}^2\text{K}$, nach EN ISO 10077-1 ergibt dies $U_f = 1.6 \text{ W/m}^2\text{K}$
Mitte	$U = 1.458 \text{ W/m}^2\text{K}$, nach EN ISO 10077-1 ergibt dies $U_f = 1.5 \text{ W/m}^2\text{K}$

^{15.06.2009,} Laboratorium der BFH, Biel

2 PRÜFGRUNDLAGEN

EN ISO 10077-1 (11/2000) Berechnungen des Wärmedurchgangskoeffizienten –

Teil 1: Vereinfachtes Verfahren.

EN ISO 10077-2 (12/2003) Berechnungen des Wärmedurchgangskoeffizienten –

Teil 2: Numerisches Verfahren für Rahmen.

3 PRÜFGEGENSTAND

Die U_f-Wert-Berechnung erfolgte am System Oeko Plus.

In der Abbildung 1 wird das Prüffenster dargestellt. Die Schnittzeichnungen der Fenster befinden sich im Anhang A.

Abbildung 1: System Oeko Plus

Blendrahmen		
Rahmenmaterial:	Holz (Fichte)	
Profildicke:	64 mm	
Profilbreite :	95 mm	
Dichtungen:	Anzahl: 1, Material: EPDM	

Flügelrahmen		
Rahmenmaterial: Holz (Fichte) / Aluminium		
Profildicke:	82 mm inkl. Aluminium	
Profilbreite :	68 mm	
	Mittelpartie: 112 mm	
Dichtungen:	Anzahl: Mittelpartie 1, Material: EPDM	

Glasabdichtung	
Abdichtung innen:	Dichtungsprofil EPDM
Abdichtung aussen:	Dichtungsprofil EPDM

4 NUMERISCHE BERECHNUNGEN

Der Wärmedurchgangskoeffizient (U_f) wurde mit dem Programm flixo 5.00.428.1der Firma Infomind GmbH, Zürich berechnet. Die Materialeigenschaften (Lambda-Werte) stammen aus den Normen EN ISO 10077-2, EN ISO 12524 und SIA Merkblatt 2001 Version 2003. Die Materialisierung der verschiedenen Oberflächenmodelle wird auf den nächsten Seiten dargestellt.

4.1 U_f-Wert-Berechnungen

Bei der Berechnung des U_f-Wertes (U-Wert des Fensterrahmens) wird das Isolierglas durch ein fiktives Glaspaneel mit einem Lambda-Wert von 0.035 W/(mK) ersetzt. Die von der Norm EN ISO 10077-2 geforderten Randbedingungen sind in folgender Tabelle aufgelistet.

Tabelle 1: Randbedingungen für die Berechnungen von Uf

Bezeichnung	Temperatur θ	Wärmeübergangskoeffizient h		
	[°C]	[W/m ² K]		
Außen Standard	0	25.0		
Innen Standard	20	7.692		
Innenecke raumseitig	20	5.0		

5 PRÜFERGEBNISSE UF WERT

Materialien Randbedingungen $\lambda[W/(m\cdot K)]$ $q[W/m^2] \theta[^{\circ}C] h[W/(m^2\cdot K)]$ Name Name Aluminium (Si-Legierungen) 160.000 Aussen Fenster 0.000 25.000 EPDM (Ethylen Propylen Dien Monomer) 0.250 Innen Standard 20.000 7.69231 Innen reduz. Strahlung/Konvektion Leicht belüftete Hohlräume, Eps=0.9 5.000 20.000 Maske 0.035 Symmetrie/Bauteilschnitt 0.000 Stahl (1) 50.000 Unbelüftete Hohlräume, Eps=0.9 Weich-Holz (typisches Bauholz) 0.130

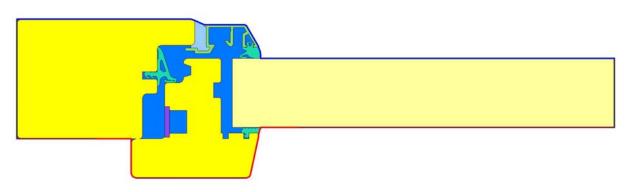
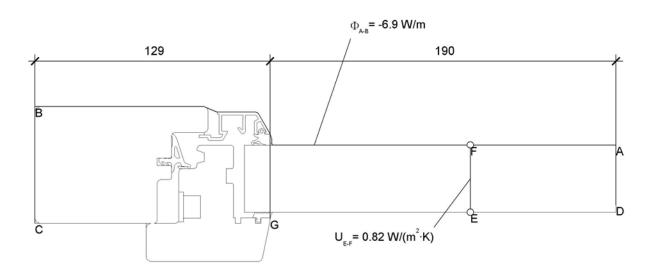



Abbildung 2: Randbedingungen und Materialien, Detail Seite/Oben

$$U_{r_{G}} = \frac{\frac{\Phi}{\Delta T} - U_{p} \cdot b_{p}}{b_{r}} = \frac{\frac{-6.916}{-20.000} - 0.817 \cdot 0.190}{0.129} = 1.477 \text{ W/(m}^{2} \cdot \text{K)}$$

Abbildung 3: Uf Wert Berechnung, Detail Seite/Oben

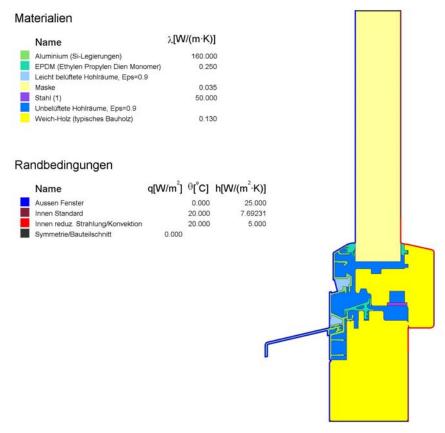


Abbildung 4: Randbedingungen und Materialien, Detail Unten

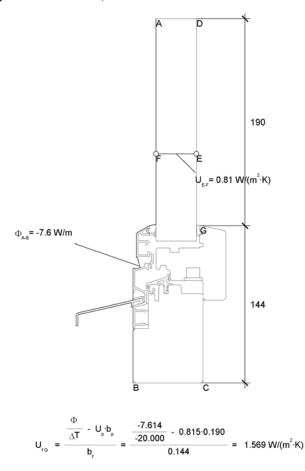


Abbildung 5: Uf Wert Berechnung, Detail Unten

Materialien

Randbedingungen

	Name	λ [W/(m·K)]	Name	q[W/m²]	θ[°C]	$h[W/(m^2 \cdot K)]$
1	Aluminium (Si-Legierungen)	160.000	Aussen Fenster		0.000	25.000
	EPDM (Ethylen Propylen Dien Monomer)	0.250	Innen Standard		20.000	7.69231
	Leicht belüftete Hohlräume, Eps=0.9		Innen reduz. Strahlung/Konvektion		20.000	5.000
	Maske	0.035	Symmetrie/Bauteilschnitt	0.000		
	Stahl (1)	50.000				
	Unbelüftete Hohlräume, Eps=0.9					
	Weich-Holz (typisches Bauholz)	0.130				

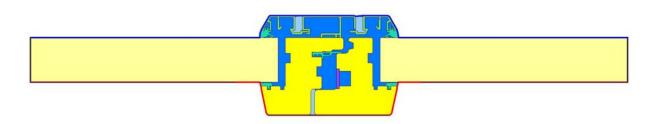
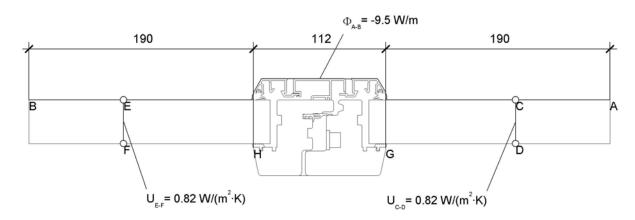



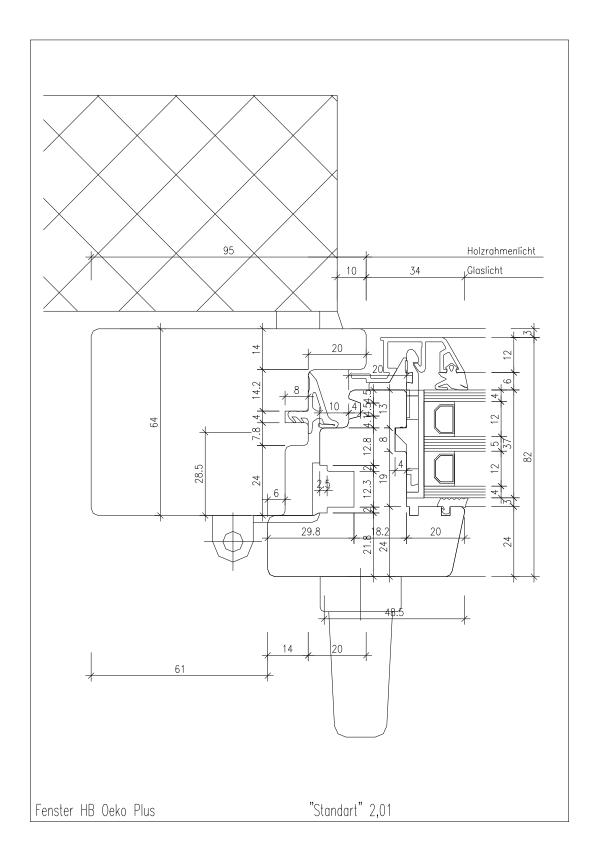
Abbildung 6: Randbedingungen und Materialien, Detail Mitte

$$U_{fGH} = \frac{\frac{\Phi}{\Delta T} - U_{p1} \cdot b_{p1} - U_{p2} \cdot b_{p2}}{b_{f}} = \frac{\frac{-9.476}{-20.000} - 0.817 \cdot 0.190 - 0.817 \cdot 0.190}{0.112} = 1.458 \text{ W/(m}^2 \cdot \text{K)}$$

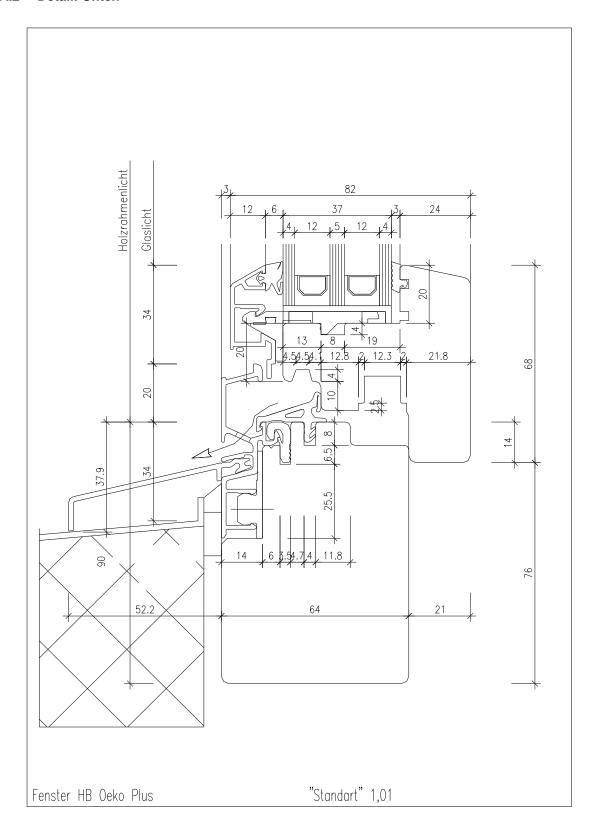
Abbildung 7: Uf Wert Berechnung, Detail Mitte

6 BESTIMMUNGEN ZUM VORLIEGENDEN BERICHT

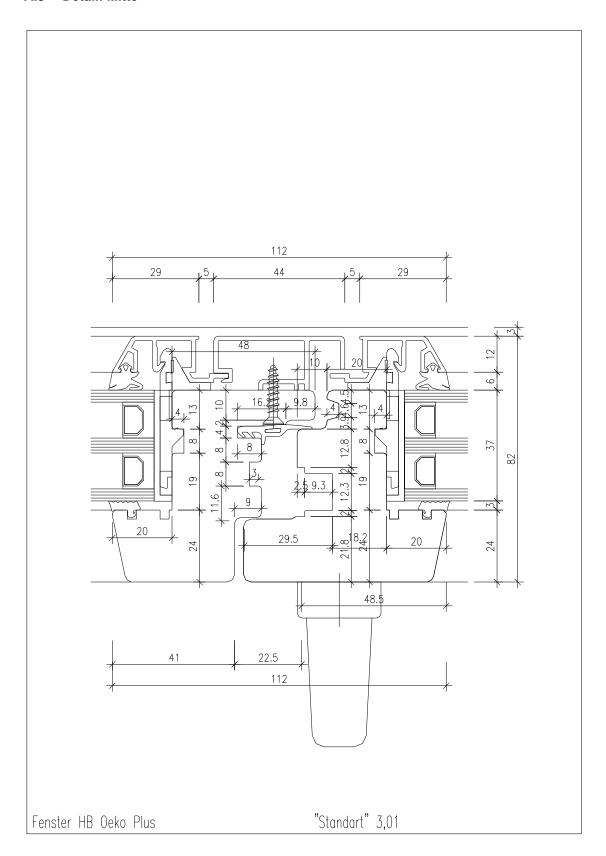
Die Prüfergebnisse dieses Berichts beziehen sich ausschliesslich auf die geprüften Gegenstände. Dieser Bericht darf nicht ohne Genehmigung der BFH auszugsweise vervielfältigt werden. Jegliche Veröffentlichung des Berichts oder von Teilen davon bedarf der schriftlichen Zustimmung der BFH. Angaben zur Messunsicherheit werden auf Anfrage gemacht. Ein Original dieses Berichts wird von der BFH für 5 Jahre aufbewahrt. Dieser Bericht ist nur mit den Unterschriften des Leiters F+E Fassaden-, Bauelemente und Möbel und des Sachbearbeiters gültig.


Dieser Bericht besteht aus 12 Seiten

7 VERZEICHNISSE


7.1 Tabellenverzeichnis	
Tabelle 1: Randbedingungen für die Berechnungen von U _f	4
7.2 Abbildungsverzeichnis	
Abbildung 1: System Oeko Plus	3
Abbildung 2: Randbedingungen und Materialien, Detail Seite/Oben	5
Abbildung 3: U _f Wert Berechnung, Detail Seite/Oben	5
Abbildung 4: Randbedingungen und Materialien, Detail Unten	6
Abbildung 5: U _f Wert Berechnung, Detail Unten	6
Abbildung 6: Randbedingungen und Materialien, Detail Mitte	
Abbildung 7: U _f Wert Berechnung, Detail Mitte	7

Anhang A: DETAILZEICHNUNGEN


A.1 Detail: Seite/Oben

A.2 Detail: Unten

A.3 Detail: Mitte

